
Topological Sort
and Lowest Common Ancestor

Mohammed Yaseen Mowzer

17 April 2015



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Directed Acyclic Graphs (DAGs)

Definition
A Directed Acyclic Graph (DAG) is a graph such that

all of its edges are directed
there exist no cycles



A DAG is not a Forest

Forest DAG
Edges are undirected Edges are directed
Each node has one parent Each node can have multi-

ple parents
At most one path between
any two points

Multiple paths between any
two points.

No cycles No cycles

a b

c

d

e f



What do DAGs represent

A DAG can be used to represent any transitive relation.

Definition
An operation, ◦ is transitive if for any a, b, c, if a ◦ b and b ◦ c
then a ◦ c.

For example
An ordering a < b and b < c then a < c.
If a requires b and b requires c then a requires c



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Git



Family Tree DAG



Compilation dependencies



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



What is topological sort?

Definition
A topological ordering of a directed graph is a linear ordering of its
vertices such that for every directed edge uv from vertex u to
vertex v , u comes before v in the ordering — Wikipedia

a b

c

d

e f

a b c d e f



What is topological sort?

Definition
A topological ordering of a directed graph is a linear ordering of its
vertices such that for every directed edge uv from vertex u to
vertex v , u comes before v in the ordering — Wikipedia

a b

c

d

e f

a b c d e f



What is topological sort?

Definition
A topological ordering of a directed graph is a linear ordering of its
vertices such that for every directed edge uv from vertex u to
vertex v , u comes before v in the ordering — Wikipedia

a b

c

d

e f

a b c d e f



What is topological sort?

The topological ordering is the sequence in which tasks need to be
completed so that all dependencies are satisfied.

a b

c

d

e f

a b c d e f



Properties of a Topological ordering

a b c d e f

It is trivially reversible.

a b c d e f

There may be multiple orderings.

a b cd e f



Properties of a Topological ordering

a b c d e f

It is trivially reversible.

a b c d e f

There may be multiple orderings.

a b cd e f



Properties of a Topological ordering

a b c d e f

It is trivially reversible.

a b c d e f

There may be multiple orderings.

a b cd e f



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Iterative (Khan’s?) algorithm

L = List (will contain topological ordering )
S = List of nodes with no incoming edges

while S is non -empty do
remove a node n from S
add n to tail of L
for each node m with an edge e from n to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into S

if graph has edges then
return error (graph has at least one cycle)

else
return L (a topologically sorted order)



Explanation

1 Find a node n with no unsatisfied dependencies (incoming
edges).

2 “Compile” n and “remove” it from it’s dependents.
3 If nodes have not been “compiled“ goto 1.



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Recursive (DFS) algorithm

L = List (will contain topological ordering )
Mark all nodes white.

for each node n
if n is white

visit(n)

function visit(node n)
mark n grey
for each node m with an edge from n to m do

if m is grey
error # There is a cycle

if m is white
visit(m)

mark n black
add n to head of L



C++ Topological sort (DFS)

for (int i = 0; i < N; ++i)
if (color[i] == WHITE)

visit(i);

void visit(int v)
{

color[v] = GREY;
for (int u : graph[v])

if (color == GREY)
exit (1);

else if (color[u] == WHITE)
visit(u);

color[v] = BLACK;
L. push_back (v);

}



Explanation

Visit:
If a node has no dependencies (outgoing edges) “compile“ it.
Otherwise visit all it’s dependents (neighbours) then
“compile“ it.



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Comparison between iterative and recursive algorithms

Iterative algorithm
Need to store number of incoming edges.
Has an explicit stack.
Will not cause stack overflow.
Check for cycles occurs after algorithm.

Recursive algorithm
Needs a color array.
Has an implicit stack.
Might cause stack overflow.
Check for cycles during occurs during algorithm.



Time Complexity

Time Complexity is Θ(V + E )
Every vertex is visited once.

for (int i = 0; i < N; ++i)
if (color[i] == WHITE)

visit(i);

Each edge of every vertex checked once.

for (int u : graph[v])



Hamiltonian Path

Definition
A Hamiltonian Path is a path that traverses every vertex in a
graph.

Finding a Hamiltonian Path is an NP-Complete problem:
there is no known polynomial time solution, but

Hamiltonian Path exists if and only if every adjacent pair of a
topological ordering has an edge between them.
Finding a Hamiltonian Path in a DAG is in P.



Hamiltonian Path

Definition
A Hamiltonian Path is a path that traverses every vertex in a
graph.

Finding a Hamiltonian Path is an NP-Complete problem:
there is no known polynomial time solution, but
Hamiltonian Path exists if and only if every adjacent pair of a
topological ordering has an edge between them.
Finding a Hamiltonian Path in a DAG is in P.



Outline

1 Directed Acyclic Graphs
Explanation
Examples

2 Topological orderings

3 Topsort Algorithm
Iterative algorithm
Recursive algorithm
Analysis

4 Example Problem



Example Problem

Example (Codeforces Round 290 div. 1 Problem A)

A list of names are written in lexicographical order, but not in a
normal sense. Some modification to the order of letters in alphabet
is needed so that the order of the names becomes lexicographical.
Given a list of names, does there exist an order of letters in Latin
alphabet such that the names are following in the lexicographical
order. If so, you should find out any such order.



Sample Input Output

Input

3
rivest
shamir
adleman

Output

bcdefghijklmnopqrsatuvwxyz



Solution

Between every consecutive pair of words, draw and edge between
the first two different letters. Output the topological ordering of
that graph.


	Directed Acyclic Graphs
	Explanation
	Examples

	Topological orderings
	Topsort Algorithm
	Iterative algorithm
	Recursive algorithm
	Analysis

	Example Problem

